Network Communications

Contents
1 PPP

2 PPPoE

3 Email

4 WWW server

5 Firewalls
51 IPFilter . . . . . . . e e
5.2 IP Filter configuration . . . . . . . . . . . .. .. Lo
5.3 PacketFiltering . . . . . . . . . . . e
5.3.1 Filteringrulessyntax . . . . . . . . . . ... 000
5.3.2 Addresspools . . . . . . . . e e

6 NAT (Network Address Translation)
6.1 NATrulessyntax . . . . . . . . . . . @ i i i e e e

7 Advanced Networking
8 Crossbow

9 Hipster as a NAS

9.1 Hipster as a CIFS server (workgroup) . . . . . . . . . . . . .« v ...
9.1.1 Commandsused . . . . . . . .. ..o e e e
9.1.2 Configurationsteps.. . . . . . . . . . o o0 e e e e e e

9.2 Hipsterasa CIFSserver (domain) . . . . . . . . . . . ... .......

9.3 Hipsterasa SAMBA Server . . . . . . . . . i e e e e e e e e

9.4 Configuring CIFS/SMB client connectivity . . . . . . . . . .. ... ...
9.4.1 Adding a remote share using the Linux smbclient . . . . . . . . ..
9.4.2 Adding a remote share using the KDE Dolphin file manager GUI
9.4.3 Adding a remote share using a Windows client . . . . . . . . . ..

9.5  Hipsterasan NFSserver . . . . . . . . . . . v i

10 Hipster as an NIS server
11 Hipster as an LDAP server

12 Hipster as a DHCP server

OaObhrbdADoOw w

(20, ]

o O

O O O 00O NNNO

©



13 Hipster as an FTP server
14 Hipster as a DNS server
15 Hipster as a NTP server

16 Hipster as a INETD server

10

10



® NOTE:

This is a DRAFT document which may contain errors!

Help us improve and expand this site.

Please see the Contrib section for more details about joining the Openindiana Docu-
mentation Team.

< Place holder for Introduction content >

1 PPP

< Place holder for content >

2 PPPoE

< Place holder for content >

3 Emalil

< Place holder for content >

4 WWW server

* Apache
* nginx

5 Firewalls

Firewalls are used to filter network traffic based on rules set by the system administrator.
Firewall can protect your personal computer or whole company’s network from unauthorized
network while allowing passage of legitimate network traffic.

5.1 |IP Filter

Openlindiana comes with built-in firewall, IP Filter. IP Filter is the stateful packet filtering and
network address translation (NAT) mechanism. IP filter can filter any kind of traffic based
on source or destination IP address or pool of IP addresses, source or destination ports,
interface or direction of the network traffic. Openindiana IP Filter is derived from open source
IPFilter software.

® NOTE:
To manage IP Filter rules one must assume a role that includes IP Filter Management
profile rights or superuser (root).




5.2 IP Filter configuration

IP Filter is configured by loadable configurations files stored in /etc/ipf. One can create
several configuration files in 7etc/ipf for firewall configuration:

« ipf.conf - stores packet filtering rules
* ipnat.conf - defines NAT rules
* ippol.conf - address pool configuration

If IP Filter SMF service is enabled then the configured rules will be automatically loaded at
every boot time of the operating system.

5.3 Packet Filtering

IP Filter ruleset can be configured with the ipf(1M) or /etc/ipf/ipf.conf file. Rules are pro-
cessed by the “the last matching rule wins” logic. This means that packet passing the IP Filter
ruleset from the beggining and the action of the last rule that matched the packet is applied.
There are two exceptions, which change this processing. The first one is the use of quick
keyword, which will apply the rule on the packet and stop further filter rules checks. Another
exception is the group keyword, which matches packet. Only rules with group keyword are
used for packet processing.

5.3.1 Filtering rules syntax

The following format is used to create filtering rules:
action [in|out] option keyword, keyword..
Every rule begins with the action. Action can be one of these:

* block - denies packets from passing the filter

» pass - allows packets to pass the filter

* log - logs the packet. ipmon(1M) is used to view the log file.

e count - counts packet into the filter statistics. Use ipfstat(1M) to display the statistics.

» skip number - skips the filter over number filtering rules

» auth - user program is requested to perform packet authentification in order to decide
if the packet should be passed or not

Following the action, the next word is in or out. This determines in which direction rules are
applied, e.g incoming or outgoing packets.

The option keyword is next. One can choose from:

* log - logs the packet is the packet matched the rule. Use ipmon(1M) to view the log.

» quick - rule with quick keyword is executed if packet matches it. No further rules check-
ing is done.

on interface - rule is applied only on interface in both directions

dup-to interface - packet is copied and sent out on interface to specified IP address
to interface - packet is moved to an outbound queue on interface

Next are the keywords that determine if the packet matches the rule. The following keywords
shown here can be used:


https://illumos.org/man/1M/ipf
https://illumos.org/man/1M/ipmon
https://illumos.org/man/1M/ipfstat
https://illumos.org/man/1M/ipmon

tos - packet is filtered based on the type-of-service value written as decimal or hex-
adecimal integer.

ttl- packet is matched based on its time-to-live value.

proto - used to match a specific protocol. Any protocol name from /etc/protocols or its
decimal representation can be used.

from/tol/alllany - matches either source or destination IP address of the packet and
the port number. All accepts packet from any source to any destination.

with - matches specified attributes associated with the packet. Inserted not/no in front
of the keyword matches the packet only if the option is not present.

flags - filters based on TCP flags that are set.

icmp-type - filters based on ICMP type.

keep keep-options - determines whetever state should be kept for a packet. state
stores information about the session and can be kept on TCP, UDP, and ICMP packets.
The frags keeps information about packet fragments and apllies them to later fragments.
This option allows matching packets to pass without further ruleset evalution.

head number - creates new group for filtering rules denoted by number.

group number - adds the rule to group number. The default group value is O.

In the following example we will block all incoming packet on igh0 from 10.0.0.0/8. This rule
should be included in one’s ruleset:

block in quick on igb® from 10.0.0.0/8 to any

5.3.2 Address pools

Address pools group multiple IP addresses/networks into a single reference that can be used
in IP Filter rules.

6 NAT (Network Address Translation)

NAT is used in case when one needs to do address or port translation. This happens when
one wants to connect multiple computers at home and share the network connection or when
one wants to do port forwarding. NAT on Openindiana is set up in /etc/ipf/ipnat.conf and
work regarding NATs is done with ipnat(1M).

6.1

NAT rules syntax

To create NAT rules use the following syntax:

command interface-name parameters

Every rule begins with command from one of these:

map - maps one IP address or network to another IP address or network.

rdr - redirects packet from one IP address and port to another IP address and port.
bimap - creates bidirectorial NAT between an external and an internal IP address.
map-block - establishes static IP address-based translation.

Interface named is used after command, e.g. ighO.

To determine NAT configuration one has to use one of the following parameters:


https://illumos.org/man/1M/ipnat

* ipmask - designates the network mask.
» dstipmask - designates the address ipmask is translated to.
* mapport - designates TCP or UDP protocols along with range of ports.

Assuming we have an external IP address 10.0.0.1/24 on interface eg1000 and an internal
range of 192.168.1.0/24. The example NAT rule would look like this:

map egloeO 192.168.0.0/24 -> 10.0.0.1/24

® NOTE:
NAT is not usable with IPv6 IP filter as NAT is deprecated in IPv6. NAT can be only
used with IPv4 addresses.

7 Advanced Networking

< Place holder for content >

8 Crossbow

< Place holder for content >

9 Hipster as a NAS

Openindiana provides several ways to share data with network clients.

Implementation Description

CIFS Kernel based SMB file sharing solution
offering ZFS integration, ease of use, and
relatively simple configuration.

SAMBA Modern userland based SMB file sharing
solution providing support for newer SMB
protocols (SMB 2.1) and better compatibility
with modern Windows clients.

NFS The Network File System was originally
developed by Sun Microsystems.




® NOTE:
ITEMS TO WRITE ABOUT:
For a variation of configuring a home NAS - this could be done virtually as well
* Running Ol as a VMware EXSI guest
- Local storage hardware is passed through to the Ol guest and then shared
via ISCSI, CIFS, NFS, etc.
For help writing this section, see the following OpenSolaris references:
» Setting Up an OpenSolaris NAS Box
Getting Started With the Solaris CIFS Service
How to enable guest access to a Solaris CIFS share
Solaris CIFS Service Troubleshooting
What's New With Solaris CIFS
CIFS Technical References
Also have a look at the OpenSolaris CIFS Administration Guide

9.1 Hipster as a CIFS server (workgroup)

< Placeholder for introduction content >

9.1.1 Commands used

* sharemgr - configure and manage file sharing

* smbadm - configure and manage CIFS local groups and users, and manage domain
membership

» zfs - configures ZFS file systems

* passwd - change login password and password attributes

* chown - change file ownership

9.1.2 Configuration steps

Start by listing available storage pools.

zfs list
NAME USED AVAIL REFER MOUNTPOINT
storage 498K 899G 19K /storage

Create your ZFS dataset to be shared via CIFS/SMB.

zfs create -0 casesensitivity=mixed -o sharesmb=on storage/backup
Start the CIFS service.

svcadm enable -r smb/server

Join the CIFS server to a workgroup.

smbadm join -w WORKGROUP

Configure PAM authentication for the CIFS service.

echo "other password required pam_smb_passwd.so.1l nowarn" >> /etc/pam.conf


https://web.archive.org/web/20091008234550/http://developers.sun.com/openstorage/articles/opensolaris_nas.html
https://web.archive.org/web/20091005070838/http://wiki.genunix.org/wiki/index.php/Getting_Started_With_the_Solaris_CIFS_Service
https://web.archive.org/web/20091021005616/http://blogs.sun.com/afshinsa/entry/how_to_enable_guest_access
https://web.archive.org/web/20091126111451/http://wiki.genunix.org/wiki/index.php/Solaris_CIFS_Service_Troubleshooting
https://web.archive.org/web/20091124124935/http://wiki.genunix.org/wiki/index.php/What's_New_With_Solaris_CIFS
https://web.archive.org/web/20090725231658/http://wiki.genunix.org/wiki/index.php/CIFS_Technical_References
https://docs.oracle.com/cd/E19120-01/open.solaris/820-2429/820-2429.pdf

Reset the password for the local user accounts which will be used for remotely accessing
the CIFS/SMB share.

passwd <user_account>
Set the share name to be used for the CIFS/SMB share.
zfs set sharesmb=name=backup storage/backup

Change the ownership of ZFS dataset to the user account which will be used for remotely
accessing the CIFS/SMB share.

chown -R <user_account> /storage/backup
Verify everything is all set to go.
sharemgr show -vp

default nfs=()

smb smb=()
* /var/smb/cvol smb=() ""
c$=/var/smb/cvol smb=(abe="false" guestok='"false") "Default
< Share"
zfs smb=()

zfs/storage/backup smb=()
backup=/storage/backup

You can create additional CIFS datasets using the following 4 commands.

e zfs create -0 casesensitivity=mixed -o sharesmb=on <pool_name/dataset_name>
e zfs set sharesmb=name=<new_share_name> <pool_name/dataset_name>

* chown -R <user_account> <path_to_dataset>

* sharemgr show -vp

9.2 Hipster as a CIFS server (domain)

< Placeholder for introduction content >

9.3 Hipster as a SAMBA server

< Place holder for content >

9.4 Configuring CIFSISMB client connectivity

< Place holder for content >

9.4.1 Adding a remote share using the Linux smbclient

» Accessing an SMB Share With Linux Machines


http://www.tldp.org/HOWTO/SMB-HOWTO-8.html

9.4.2 Adding a remote share using the KDE Dolphin file manager GUI

* In the left hand pane click Network

« In the right hand pane click Add Network Folder

* The Network Folder Wizard opens

» Select the radio button for Microsoft Windows network drive and click next

» Specify a name for the share - can be anything - this is just a label

» Specify the remote CIFS/SMB server name (or IP address)

» Specify the share name of the remote CIFS/SMB share

* Click the save and connect button

* You'll be prompted for a remote username and password

» Ensure the checkbox is marked to save credentials or you'll be asked for everything
you do.

9.4.3 Adding a remote share using a Windows client

< Place holder for content >

9.5 Hipster as an NFS server

< Place holder for content >

10 Hipster as an NIS server

< Place holder for content >

11 Hipster as an LDAP server

< Place holder for content >

12 Hipster as a DHCP server

< Place holder for content >

13 Hipster as an FTP server

< Place holder for content >

14 Hipster as a DNS server

see https://docs.oracle.com/cd/E23824 _01/html/821-1455/dnsref-31.html specifically pkg in-
stall pkg:/service/network/dns/bind



15 Hipster as a NTP server

< Place holder for content >

16 Hipster as a INETD server

< Place holder for content >

10



	PPP
	PPPoE
	Email
	WWW server
	Firewalls
	IP Filter
	IP Filter configuration
	Packet Filtering
	Filtering rules syntax
	Address pools


	NAT (Network Address Translation)
	NAT rules syntax

	Advanced Networking
	Crossbow
	Hipster as a NAS
	Hipster as a CIFS server (workgroup)
	Commands used
	Configuration steps

	Hipster as a CIFS server (domain)
	Hipster as a SAMBA server
	Configuring CIFS/SMB client connectivity
	Adding a remote share using the Linux smbclient
	Adding a remote share using the KDE Dolphin file manager GUI
	Adding a remote share using a Windows client

	Hipster as an NFS server

	Hipster as an NIS server
	Hipster as an LDAP server
	Hipster as a DHCP server
	Hipster as an FTP server
	Hipster as a DNS server
	Hipster as a NTP server
	Hipster as a INETD server

