Vagrant Installation

Contents

1 Installing Ruby from source

2 Installing Vagrant from source

3 VirtualBox

4 Testing Vagrant projects from Oracle
5 Vagrant and Pulseaudio

6 Openindiana Vagrantfiles

a ~ b

The following notes document the steps to install Vagrant on Openindiana Hipster.

Vagrant is a tool for building and managing virtual machine environments in a single workflow.
See vagrantup.com or hashicorp.com for more information.

The following notes explain how to build vagrant from source for Openindiana and how to
use vagrant with VirtualBox as provider.

1 Installing Ruby from source

Vagrant uses some tools such as git, curl, bsdtar and Ruby. Although that Ruby is available
in the Openlindiana repositories, Hashicorp recommends NOT to use the system provided
Ruby. So we’ll build Ruby from source as well.

Complete instructions from Hashicorp are available at :

https://www.vagrantup.com/docs/installation/source

Create a ZFS filesystem (or just a directory) to install Ruby and Vagrant :
zfs create -o mountpoint=/scratch rpool/scratch

Make a non-root user the owner of that directory. This is the user that you normally use to
login into your Ol system :

chown <some-user> /scratch
Install the Openindiana development tools if you do not already have them :
pkg install build-essential

You can use gcc 7.5 to build a 32bit executable, or use gcc 10.3 to build a 64bit ruby exe-
cutable :

pkg install gcc-10

pkg set-mediator -V 10 gcc

pkg mediator gcc
MEDIATOR VER. SRC. VERSION IMPL. SRC. IMPLEMENTATION
gcc local 10 system

Check that automake and autoconf are installed :

pkg install developer/build/autoconf
pkg install developer/build/automake

Then as ordinary non-root user continue.

As non-root user, you can now either build ruby from the git repo, or you can download a
.tar.gz ruby source package.

If you clone the git repo, then do :

$ cd /scratch

$ git clone https://github.com/ruby/ruby.git
$ cd ruby

$ git checkout ruby_3 0

$./autogen.sh

https://www.vagrantup.com/
https://www.hashicorp.com/
https://www.vagrantup.com/docs/installation/source

The above commands set up the source tree using the autogen.sh script and checkout the
3.0 branch of ruby.

On the other hand, if you download Ruby version 3.0.2 (or 3.0.3 when it will be released)
from :

https://www.ruby-lang.org/en/downloads/
then copy ruby-3.0.2.tar.gz to the scratch directory and extract it there :

$ cd /scratch
$ gtar xvfz ruby-3.0.2.tar.gz

In this case, make sure that the bison grammar ripper.y is NOT rebuilt on Ol. This is minor
issue currently at time of writing these notes with bison. The Ruby sources are generated
with bison 3.5.1 while Ol currently runs a more recent version of bison (3.8.2) :

$ 1s -1 ruby-3.0.2/ext/ripper/ripper.*
$ touch ruby-3.0.2/ext/ripper/ripper.c

You can verify that the grammar in the ruby source package is built using an older version of
bison. The touch command attempts to avoid a rebuild.

$ head ruby-3.0.2/ext/ripper/ripper.y
$ 1s -1 ruby-3.0.2/ext/ripper/ripper.*

Then cd into the source directory of the downloaded source package :
$ cd ruby-3.0.2

Whether you have cloned the git repo, or downloaded the source package, continue now to
configure Ruby 3.0.2 :

A first option is to build ruby with O3 and g3 optimisation and without DTrace :
$./configure --disable-dtrace --with-gcc --prefix=/scratch/ruby-30
A second option, is to enable DTrace and build with O3 and g1 optimisation :

$./configure --enable-dtrace --with-gcc --prefix=/scratch/ruby-30
< debugflags="-g1"

Note in the above, if you enable DTrace, that the debugflags is set to -g1 (level g1). Currently
there is a problem with the DTrace build and g3 level debug information, while with level 1
debug info, the build with DTrace enabled, works.

Either way, whether you have configured Ruby 3.0.2 with or without DTrace, install it under
/scratch/ruby-30 as follows :

$ gmake install
Modify the PATH to use Ruby 3.0.2:

$ PATH=/scratch/ruby-30/bin:$PATH
$ ruby --version
ruby 3.0.3p150 (2021-11-06 revision 6d540c1b98) [i386-solaris2.11]

The ruby 3.0.3p150 string is from the git repo using the not-yet released ruby 3.0.3. But the
same procedure applies to ruby 2.7.4, 3.0.2 or even ruby 3.1.

https://www.ruby-lang.org/en/downloads/

If you used gcc 10.3 for the build, you should see x64 64 instead of i386 because then you
should have built a 64bit ruby instead.

2 Installing Vagrant from source

Complete instructions from Hashicorp are available at :
https://www.vagrantup.com/docs/installation/source

Create a vagrant directory as ordinary non-root user (same login user as used for the instal-
lation of Ruby 3.0.2) :

$ mkdir /scratch/vagrant
Git clone the Vagrant source code :

$ cd /scratch/vagrant
$ git clone https://github.com/hashicorp/vagrant.git .

Make sure that bundle and bundler commands are from Ruby 3.0.2 :

$ type bundler
bundler is a tracked alias for /scratch/ruby-30/bin/bundler
1ls /scratch/ruby-30/bin/

bundle htmldiff listen rdoc rwinrm
bundler httpclient racc ri rwinrmcp
erb irb rake rspec thor

gem 1diff rbs ruby typeprof

Follow the Hashicorp instructions for the install by running :
$ bundle install

The above is a non-root installation into /scratch/ruby-30.

Then create a binstub and add it to your path :

$ bundle --binstubs exec
$ PATH=/scratch/vagrant/exec:$PATH

Note that the above adds the directory exec, not bin, to the PATH. There also is a bin directory
but that’s not the binstub directory.

$ type vagrant

vagrant is a tracked alias for /scratch/vagrant/exec/vagrant
$ vagrant --version

Vagrant 2.2.20.dev

3 VirtualBox

Vagrant can use multiple providers, but in this case we use VirtualBox as provider:

pkg list virtualbox
NAME (PUBLISHER) VERSION IFO
system/virtualbox 6.1.30-2021.0.0.0 i--

https://www.vagrantup.com/docs/installation/source

Vagrant uses a Vagrantfile to describe the actions to build the virtual machine or machines.
Once you or someone else creates a single Vagrantfile, you just need to vagrant up and
everything is installed and configured for you to work.

If the Vagrantfile uses internal networks, check first that internal networks are defined in
VirtualBox under the File menu (Host Network Manager).

The following example shows a setup with two internal networks. By default there will only
be just one internal network :

dladm show-phys | grep vbox
vboxnet® Ethernet up 1000 full vboxneto
vboxnet1 Ethernet up 1000 full vboxnet1

On VirtualBox 6.1.30 it also seems necessary to set up a file in /etc/vbox :

$ cat /etc/vbox/networks.conf
* 192.168.56.0/16 192.168.99.0/16

With the VBoxManage command, check the available internal networks:

$ VBoxManage list hostonlyifs | grep 192
IPAddress: 192.168.56.1
IPAddress: 192.168.99.1

The above example is for 2 internal networks. By default only the 192.168.56.1 is setup by
the default VirtualBox installation.

4 Testing Vagrant projects from Oracle
Many Vagrantfile are provided, for example some are by Oracle, for testing products such as
the Oracle Database.
As ordinary login user do:
$ mkdir -p /scratch/oracle/vagrant-projects
Then clone the Oracle vagrant projects :

$ cd /scratch/oracle/vagrant-projects
$ git clone https://github.com/oracle/vagrant-projects.git .

Some interesting Oracle Database products can be built :

$ cd /scratch/oracle/vagrant-projects
$ cd OracleDatabase/

$ 1s
11.2.0.2 12.2.0.1 18.4.0-XE 21.3.0
12.1.0.2 18.3.0 19.3.0 README . md

For example to build a 21.3 Oracle Database provided you can download from OTN (Oracle
Tech Net) the LINUX.X64 213000_db_home.zip Oracle product :

$ cd 21.3.0
$ vagrant up
Bringing machine 'oracle-21c-vagrant' up with 'virtualbox' provider...

==> oracle-21c-vagrant: Importing base box 'oraclelinux/8'...
==> oracle-21c-vagrant: Matching MAC address for NAT networking...

. lots of messages ---

oracle-21c-vagrant: Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 -
< Production
oracle-21c-vagrant: Version 21.3.0.0.0

This is an example Vagrantfile to deploy a VirtualBox VM called oracle-21c-vagrant running
Linux and Oracle Database 21c.

Many other Vagrantfiles exist in the cloud.

5 Vagrant and Pulseaudio

A Vagrant VM can set the PULSE_SERVER environment variable and play sounds or music
on the host, if the host is set up to accept remote connections.

This is similar to X11 forwarding over SSH : X11 can also be forwarded from a Vagrant VM
to the host.

On platforms with the paprefs executable, this can be configured using paprefs :

[] _* PulseAudio Preferences = E3

Metwork Access | Network Server | Multicast/ATP Simultaneous Output

|?| Enable network access to local sound devices
[| Allow other machines on the LAN to discover local sound devices

| | Don't require authentication

Close

Figure 1: paprefs

If the paprefs command is not available, pulseaudio can be reconfigured with :

6

dconf load /org/freedesktop/pulseaudio/module-groups/ <<EOF
[remote-access]

argso=""

argsi="'"

enabled=true

name0="'module-native-protocol-tcp'
namel="'module-esound-protocol-tcp'

EOF

Check using the pax11publish or pactl info commands that pulseaudio accepts remote con-
nections :

$ paxililpublish
Server: {f6f2af56ea%9e3944e926c6b946197a34b}unix:/tmp/pulse-K2hFZViPE4v5/native
< tcp:somehost:4713 tcp6:somehost:4713

On the host or in the Vagrant VM the pactl info command can be used to test the connection
to the pulse server that is running on the host :

$ pactl info

Server String: tcp:localhost:24713
Library Protocol Version: 33
Server Protocol Version: 33

Is Local: no

Server Name: pulseaudio

Server Version: 13.0-rebootstrapped

Default Sample Specification: sl16le 2ch 44100Hz
Default Channel Map: front-left, front-right
Default Sink: oss_output.dspo®

Default Source: oss_input.dspO

Cookie: a3f5:b8e8

Note that there is a Cookie that is normally set on the host and VM for authentication; it
should not be required, but you could (if necessary) copy this cookie from the host to the VM
(but this seems not needed usually).

cp $HOME/.config/pulse/cookie .

6 Openindiana Vagrantfiles

See https://app.vagrantup.com/openindiana/boxes/hipster.

The oi-userland repository has for example also a Vagrantfile that can be used to create a
VM to host oi-userland (by Adam Stevko and Michal Nowak).

A set of example Vagrantfiles that use the Openlindiana Hipster operating system can be
cloned from github by :

git clone https://github.com/openindiana/vagrantfiles

These examples create various virtual machines running Openlindiana.

https://app.vagrantup.com/openindiana/boxes/hipster

	Installing Ruby from source
	Installing Vagrant from source
	VirtualBox
	Testing Vagrant projects from Oracle
	Vagrant and Pulseaudio
	OpenIndiana Vagrantfiles

