Building with oi-userland

Contents

1 Using Openindiana’s unified build system

11

1.2

1.3

2 Creating your first component

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

Overview of ol-userland00
1.1.1 A component usually consists of severalfiles:

Setting up your build environment
1.2.1 Adding RBAC profiletothe builduser
1.2.2 Downloading oi-userland00
1.2.3 Adding the local repository to your publisherlist
1.2.4 Setting the local repository as primary publisher
1.2.5 Optional: Running a local pkg server for installation on other zones/hosts

Building and installing your first packages

OB OOWWNDNDN

Creating Makefile e
Creatingpbmfiles e
Publishingpackages o
Installingthepackage

(oc oo NG NS, |

Contributing changes back to oi-userland

Every time you add or modify a component, create a new branch:

Asking for change integration 1

9
9
9
Committing changeso L 9
0
Checking Jenkins instance 10

1 Using Openindiana’s unified build system

Openindiana Hipster’s primary build framework is oi-userland. It's tied into Openindiana
continuous integration platform.

When an update is committed to the oi-userland git repository:

» an automated build is kicked off,

 then automatically the binary package will be published to the /hipster repository,

« finally, the status of the build will be reported by oibot to the #oi-dev libera.chat IRC
channel.

1.1 Overview of oi-userland

Originally oi-userland is a fork of Oracle’s userland-gate which evolved in an independent
way. The layout is very similar.

Inside oi-userland is a directory called “components”, under which directories for software
package category groups live. Inside each of these package group directories are typically
directories for all software packages belonging to the category. Some have even more sub-
directories before reaching the leaf directories containing the software packages. Note that
some software packages don’t have a package category group yet. Inside each of the soft-
ware package directories there is a main Makefile and other files necessary to build one or
more packages. The complete set of instructions to build one or more related packages is
called “a component”.

1.1.1 A component usually consists of several files:

* Makefile: the recipe to build the software and install it locally (usually to the
build/prototype/$(MACH) directory)

 patches/: directory containing patches applied before the configuration

» files/: directory containing additional files distributed with packages

* *.psm: manifests used to generate the IPS package

* $(COMPONENT_NAME).license: file containing the licenses applicable to the software

To build a component you simply cd into the directory of the software, and type “gmake
TARGET” (here we use gmake to call GNU make), where TARGET can be one of:

Target Description

clobber cleans up the component directory
completely, including deleting source

download fetches the source archive and verify its
SHA256 SUM

prep extract and apply patches

build configure and build

install install software into the prototype directory

sample-manifest generate a sample IPS manifest based on
the files installed to the prototype directory

publish publish the package to the local repository

https://hipster.openindiana.org/jenkins
https://github.com/oracle/solaris-userland/

Target

Description

pre-publish

REQUIRED_PACKAGES

run all pre-publication checks (does actually
what publish does, just without sending
package to local repository)

guess and generate build dependencies for
the packages, manual edit might be needed

env-check check build environment for missing
packages
env-prep install missing build dependencies (requires
elevated privileges)
® NOTE:

opening an issue.

project members.

Before adding new packages to oi-userland...
Before considering adding a new package to oi-userland, please check first whether
someone else is working on the package by checking the issue tracker, mailing oi-
dev@openindiana.org or asking on the IRC (#oi-dev at irc.libera.chat)

« If you don't find anyone already working on a port, please register your effort by

* If you wish to update an existing port, look at the log for the component Makefile
(“git log Makefile”) and make sure you either contact the person who last updated
the Makefile or include them on notifications for the issue by ticking their name.

This will ensure efforts aren’t duplicated and help to ensure sanity and comity amongst

1.2 Setting up your build environment

We strongly recommend building packages inside a fresh local zone set up exclusively for
building. See Quick zone setup example for simple instructions.

Further we assume that you are logged into the build zone if you set up the build environment
in a zone the directory were oi-userland is cloned can otherwise be anywhere you like.

1.2.1 Adding RBAC profile to the build user

Installing software requires privileges, so your build user must have at minimum the ‘Software

Installation’ profile:

$ profiles

Software Installation

ZFS File System Management
Console User

Suspend To RAM

Suspend To Disk

Brightness

CPU Power Management

Network Autoconf User
Desktop Removable Media User

mailto:oi-dev@openindiana.org
mailto:oi-dev@openindiana.org
../handbook/systems-administration.md#quick-setup-example

Basic Solaris User
All

If it is not the case add this profile to your build user:

pfexec su -
usermod -P'Software Installation' <username>

This is not necessary if your user has already the ‘Primary Administrator’ profile.

1.2.2 Downloading oi-userland

Start by forking oi-userland repository on Github and then check out the repository (subdirec-
tory oi-userland must not pre-exist):

cd ~
git clone https://github.com/mylogin/oi-userland
cd oi-userland

Add https://github.com/Openindiana/oi-userland/ as upstream to your repository to resync
your repository with oi-userland.

git remote add upstream https://github.com/OpenIndiana/oi-userland/

Run the setup stage which will prepare some tools and create an IPS pkg5 repository for first
use under the i386 directory:

cd $HOME/oi-userland
gmake setup

1.2.3 Adding the local repository to your publisher list

pfexec pkg set-publisher -g file://$HOME/oi-userland/i386/repo userland
pfexec pkg set-publisher --non-sticky openindiana.org

1.2.4 Setting the local repository as primary publisher

pfexec pkg set-publisher --search-first userland

1.2.5 Optional: Running a local pkg server for installation on other zones/hosts

If you would like to use your oi-userland repository on other zones or hosts, you can run a
pkg server:

$ pfexec svccfg -s pkg/server

svc:/application/pkg/server> add oi-userland

svc:/application/pkg/server> select oi-userland
svc:/application/pkg/server:oi-userland> addpg pkg application
svc:/application/pkg/server:oi-userland> setprop

— pkg/inst_root=astring:'"/export/home/username/oi-userland/i1386/repo"
svc:/application/pkg/server:oi-userland> setprop pkg/port=count:"10000"
svc:/application/pkg/server:oi-userland> setprop pkg/readonly=boolean:"true"
svc:/application/pkg/server:oi-userland> refresh

https://github.com/OpenIndiana/oi-userland

svc:/application/pkg/server:oi-userland> exit
$ pfexec svcadm enable oi-userland

On other hosts you can then specify http://hostname:10000 instead of the file:// address
above. If you only intend to install and test packages locally this is not necessary as on-disk
repository access suffices.

1.3 Building and installing your first packages
Enter to oi-userland/components/PATH/TO/COMPONENT directory and run:

cd $HOME/oi-userland/components/SOFTWARE

gmake env-prep

gmake publish

pfexec pkg refresh

pfexec pkg install pkg://userland/PACKAGE_FMRI

Here PACKAGE_FMRI is a full name (FMRI) of package which you want to install. The
FMRIs of published packages will be printed in the end of publish stage. Note, that running
gmake env-prep iS strictly not required, if you are sure that all build requirements are satisfied.

To speed up the compilation you can pass an optional argument to gmake setting COMPO-
NENT_BUILD_ARGS variable in your environment, for instance with

export COMPONENT_BUILD_ARGS=-j4

to use 4 jobs for builds.

2 Creating your first component

The easiest way to create new component is to take one which is similar to yours and modify
it as needed. Also you can look at Makefile templates delivered with oi-userland.

2.1 Creating Makefile

A component Makefile usually contains variables describing how a component should be built,
installed and packaged. On the top of the Makefile it includes ../../../make-rules/shared-
macros.mk where ../../../ is the relative path from the component directory to the make-
rules directory. The file shared-macros.mk contains global constants used by other makefiles.
Sometimes some global variables that alter these constants are declared before this include.
The first section of the Makefile contains definitions of the component name, version, an url
where the software should be fetched from, a short description embedded in the package
metadata and so on. Look, for example, at 1ibrary/libjpeg6-ijg/Makefile:

COMPONENT_NAME= libjpeg6-ijg
COMPONENT_VERSION= 6.0.2

LIBJPEG_API_VERSION= 6b

COMPONENT_FMRI= image/library/libjpeg6-ijg

COMPONENT_CLASSIFICATION=System/Multimedia Libraries
COMPONENT_PROJECT_URL= http://www.ijg.org/
COMPONENT_SUMMARY= libjpeg - Independent JPEG Group library version 6b

https://github.com/OpenIndiana/oi-userland/tree/oi/hipster/templates

COMPONENT_SRC=
COMPONENT_ARCHIVE=
COMPONENT_ARCHIVE_HASH= \

jpeg-$(LIBIPEG_API_VERSION)
$(COMPONENT_NAME) - $ (COMPONENT_VERSION) . tar.gz

sha256:75c3ec241e9996504fe02a9ed4d12f16b74ade713972f3db9e65ce95cd27e35d

COMPONENT_ARCHIVE_URL=

< http://www.ijg.org/files/jpegsrc.v$(LIBIJPEG_API_VERSION).tar.gz

COMPONENT_LICENSE=

I1JG,GPLv2.0

COMPONENT_LICENSE_FILE= $(COMPONENT_NAME).license

Here

Variable

Value

Comment

COMPONENT_NAME

COMPONENT_VERSION

LIBJPEG_API_VERSION

COMPONENT_FMRI

libjpeg6-ijg

6.0.2

6b

imagel/library/libjpeg6-ijg

COMPONENT_CLASSIFICATISp$tem/Multimedia Libraries

COMPONENT_PROJECT_URAhttp://www.ijg.org/

COMPONENT_SUMMARY
COMPONENT_SRC

COMPONENT_ARCHIVE

libjpeg - Independent JPEG
Group library version 6b

jpeg-
$(LIBJPEG_API_VERSION)
$(COMPONENT_NAME) -
$(COMPONENT_VERSION).tar.gz

The name of the component,
usually it's a well-known
software name

The software version. If the
version contains letters, the
IPS_COMPONENT_VERSION
variable should define a
numerical version used for
the package, as the IPS
version string doesn’t allow
for letters

In this example this is a local
variable declared in the
Makefile.

This variable can be used in
an IPS manifest to specify
the FMRI (a name) of the
package. It should folllow
the conventions for package
FMRIs.

This entry should be in the
OpenSolaris IPS
Classification 2008
Upstream project website

A short description
(one-liner)

The name of source after
unpacking the archive

The software archive

COMPONENT_ARCHIVE_HASHa256:75c3ec241e9996504feUBadAQ DB tBbehsuim/di3972f3db9e6:

software archive

COMPONENT_ARCHIVE_URDbttp://www.ijg.org/files/jpegdkine WRILmBgeEGhEPI VERSION).tar.gz

COMPONENT_LICENSE

1JG,GPLv2.0

COMPONENT_LICENSE_FILE (COMPONENT_NAME).license

COMPONENT_ARCHIVE
A comma separated list of
licenses

The file with license text

https://github.com/OpenIndiana/pkg5/blob/oi/doc/dev-guide/appendix-a.txt
https://github.com/OpenIndiana/pkg5/blob/oi/doc/dev-guide/appendix-a.txt

Components are usually based on one of the following Makefiles depending on build system
used by packaged software (look in the make-rules directory for more makefiles):

File Build

ant.mk Ant
attpackagemake.mk AT&T package tools
cmake . mk CMake
configure.mk Autotools

gem.mk Ruby

justmake.mk plain Makefile
makemaker . mk Perl

setup.py Python distutils

Read the .mk file to see which variables you can modify, in general you can find variables
such as:

* *_ENV

* * OPTIONS

®* PRE_*_ACTION
® POST_*_ACTION

For example, you may add this line for an Autotools-based component:
CONFIGURE_OPTIONS+= --enable-shared
After creating the component Makefile you can run gmake prep.

Now you can create necessary patches for the component and put them in the patches
directory.

When the component is built and installed correctly (via gmake build and gmake install), look
if you can run the test suite if one comes with the software.

It's advised to put the expected test ouput in test/results-BITS.master (where BITS are either
32 or 64) and to ensure that the gmake test target generates reproducible results. You can use
the COMPONENT_TEST_TRANSFORMS variable to set a list of sed directives to transform
the test output and make it reproducible.

2.2 Creating p5m files

When the install target passes you can run:

gmake sample-manifest

to generate a manifest from the list of installed files.

Copy the file manifests/sample-manifest.p5m tO $(COMPONENT_NAME).p5m and edit it:

* Add your name as a contributor

Remove unused entries from the manifest:
directories: :%g/Adir/d (Vim)

static libs: :%g/.a$/d (Vim)

libtool files: :%g/.1la$/d (Vim)

* Python *.pyc: :%g/.pyc$/d (Vim)

For some components, specific rules need to be applied: they can be implemented with
transforms. Some Makefile targets defined in make-rules/ips.mk apply transforms from files
in the transforms directory at the root of oi-userland. These transforms can be used as
examples if you need custom transforms for your component.

2.3 Publishing packages

After creating a p5m file run gmake REQUIRED_PACKAGES to automatically generate a list of run-
time dependencies of the package (REQUIRED_PACKAGES section of the Makefile).

Add necessary build time dependencies on the top of the generated section.
Run gmake publish. If the manifest is valid your package is published to the local repository.

To be able to search for the new packages in the local repository you need to rebuild search
indexes:

pkgrepo refresh -s /path/to/my_repo
You can even rebuild the entire metadata:

pkgrepo rebuild -s /path/to/my_repo

2.4 Installing the package

After you've published the package to your local repository and rebuilt the repository index
or metadata you can install the package and perform whatever testing is appropriate.

pkg publisher

If the package you built and published to the local userland repository is not already part of
hipster it should be straightforward to install it:

pfexec pkg install your/package/name

If, however, the package you built is an updated version of an existing package then you may
have to take additional steps before it can be updated.

If pkg refuses to install the package from your local repository it may be because the userland-
incorporation is preventing updates to the version of the package:

$ pfexec pkg update image/library/libjpeg6-ijg
No updates available for this image.
$ pfexec pkg update
< pkg://userland/image/library/libjpeg6-i1ijg@6.0.2-2018.0.0.1:20180211T125627Z
pkg update: No matching version of image/library/libjpeg6-ijg can be installed:
Reject: pkg://userland/image/library/libjpeg6-i1jg@6.0.2-2018.0.0.1
Reason: This version is excluded by installed incorporation
— consolidation/userland/userland-incorporation@0.5.11-2018.0.0.11745

If you will install many test versions of packages on your development system you may find
it easiest to uninstall the userland-incorporation. Alternately, if you want to test a package on
a system while keeping userland-incorporation, you can use pkg change-facet to relax the
version constraint for just that package:

pfexec pkg change-facet facet.version-lock.your/package/name/here=false

After you have performed one of these steps to remove the version constraint there is one
more issue you may encounter. Because the installed version of the package came from the
openindiana.org publisher but the updated version you want to install and test is associated
with the userland publisher, pkg will by default not allow the package update to switch which
publisher provides the package.

One option to work around this is to make the openindiana.org publisher non-sticky:
pfexec pkg set-publisher --non-sticky openindiana.org
You only need to perform that operation on your development system once.

Alternately, you can force pkg to apply an update from a different publisher by specifying the
full FMRI for the package, including the publisher:

pfexec pkg update
- pkg://userland/image/library/libjpeg6-i1jg@6.0.2-2018.0.0.1:20180211T125627Z

3 Contributing changes back to oi-userland

3.1 Every time you add or modify a component, create a new branch:

git checkout -b my_feature

3.2 Keep this branch synchronized with upstream/oi/hipster:

git pull --rebase upstream oi/hipster

Your local branch is forwarded to the last commit of oi/hipster and your additional commits
are kept on top of the stack.

3.3 Committing changes

When you think you are ready with changes you need to commit them locally and push those
changes back to your Github repository.

cd ~/oi-userland/components/SOFTWARE
git add Makefile *.p5m <etc.>
git commit

Commit messages should be simple and describe what you did, e.g “Added XYZ", “XYZ:
updated to SOME_VERSION”, “XYZ: fixed SOMETHING” or “BUG_ID BUG_SUMMARY",
where BUG_ID is issue number from issue tracker and BUG_SUMMARY is the issue name.

If you've created several commits while working on your component it's necessary to squash
all your commits into one.

To do it, first check how many commits are to be considered:
git log

then

git rebase -1 HEAD~N

with N the number of commits to be squashed and follow the instructions: the letter ‘s’ should
be put in place of ‘pick’ for the N - 1 commits before the last.

If you made a mistake with the commit message or author, use:
git commit --amend

with the relevant option.

Now push your changes to your repository to GitHub.

git push my_name my_feature

or

git push -f my_name my_feature

if the branch you just rebased had already been pushed: since the history is rewritten you
need to force the push, be careful.

3.4 Asking for change integration

This is as simple as creating a Pull Request into the main oi-userland repository and asking
developers to review your changeset. We should beware of possibly breaking packages as it
adds additional work and can be unpleasant for other contributors (imagine a situation where
gcc, perl or anything else needed for building packages is broken).

Changes can be reverted quite easily but once the package is built and published additional
steps are needed. So try taking per-package testing and asking for wider testing into consid-
eration.

If you contribute a package which is known to work but its functionality might be broken
because of some issues, consider disabling it until the issue is removed.

3.5 Checking Jenkins instance

Once the changes are merged into the main oi-userland repository, the Jenkins instance will
pick up those bits and build them. If the build was successful, the built packages will be
pushed into http://pkg.openindiana.org/hipster repository. If the package build was unsuc-
cessful check the build logs and please try to come up with a solution and fix the problem so
you can have the package published into the repository.

10

	Using OpenIndiana's unified build system
	Overview of oi-userland
	A component usually consists of several files:

	Setting up your build environment
	Adding RBAC profile to the build user
	Downloading oi-userland
	Adding the local repository to your publisher list
	Setting the local repository as primary publisher
	Optional: Running a local pkg server for installation on other zones/hosts

	Building and installing your first packages

	Creating your first component
	Creating Makefile
	Creating p5m files
	Publishing packages
	Installing the package

	Contributing changes back to oi-userland
	Every time you add or modify a component, create a new branch:
	Keep this branch synchronized with upstream/oi/hipster:
	Committing changes
	Asking for change integration
	Checking Jenkins instance

